

Página: 1 de 9

Annex

Technical description

Proof of Concept

Blockchain and the right

to suppression

November 2024

Página: 2 de 9

INDEX

I. INTRODUCTION 3

II. AEPD PROOF OF CONCEPT (POC) IMPLEMENTATION DETAILS 3

A. PoC Environment, Software and Tools 3

B. Use case implementation considerations 4

C. Considerations for the procedure for detecting affected records for right to erasure 5

D. Considerations for the procedure of generating a new software version 8

Página: 3 de 9

I. INTRODUCTION

The AEPD's Proof of Concept (PoC) describes how to implement governance and

technical measures to facilitate GDPR-compliance, taking into account, in particular, the right

to erasure. It includes the definition of governance measures, policies and the implementation

of the necessary technical modifications to facilitate GDPR compliance on an Ethereum

Blockchain infrastructure.

This document aims only to detail and deepen the technical aspects of the implementation

of the proof of concept developed by the AEPD and described in the 'Technical Note on the

Blockchain Proof of Concept and the right of erasure' and explanatory video.

As both the Technical Note and the PoC have been developed from a data protection

perspective, it is essential to rigorously define the terminology and concepts and to

understand their implications. The reader is therefore referred to the Technical Note before

reading this document. The Technical Note provides the appropriate conceptual framework

on the implications of data protection in the context of Blockchain. Also, the Technical Note

sets out and details the design of the PoC, the procedures, organisational and technical

essential to understand all these aspects in order to correctly interpret the results of the PoC

and its correct application within a regulatory compliance framework.

Therefore, this annex only complements the details of the Technical Note and is intended

to those who, having read the Technical Note, wish to go into the details of the PoC

implementation. As it is addressed to people with technical knowledge in Blockchain

technology, no references are provided for the technical terms used in the document.

II. AEPD PROOF OF CONCEPT (POC) IMPLEMENTATION DETAILS

This annex presents additional details on the technical options selected and the
procedures implemented in the PoC. The aim is to provide a more in-depth explanation of
the choices made in terms of design and implementation. It also details key aspects of the
implementation of some of the procedures designed for the PoC.

A. POC ENVIRONMENT, SOFTWARE AND TOOLS

The PoC execution consists of building a permissioned private Blockchain infrastructure
with two validator nodes in archive mode. It has been implemented on a Windows 11 laptop
(Intel core i5 8th gen with 16Gb RAM), running two virtual machines with Linux Xubuntu 24.04
configured in local network with the host (Virtualbox). Each virtual machine runs a validator
node. Synchronisation of a new node is done by running a third node in the Windows host
system.

The Blockchain infrastructure uses the official Ethereum client software geth v1.13.15 (Go
language, April 2024), configured with leveldb database. It is the latest version that supports
the PoA clique consensus protocol (which has been removed in more recent versions in
favour of PoS).

A simple genesis block has been configured, with 2 validator accounts and clique protocol,
7 accounts with balance (including the validators) and for simplicity it is up to the London Fork
included, with a block creation time of 30 seconds for testing in the indicated environment.
The transactions used are of type classic or Legacy.

The applications and tools used to modify source code, perform transactions, display
Smart Contracts, help decode values, and block explorers are:

• Visual Studio Code development environment.

https://www.aepd.es/guias/Tech-note-blockchain.pdf
https://www.aepd.es/guias/Tech-note-blockchain.pdf
https://youtu.be/H7gnoI3B7SY

Página: 4 de 9

• Node,js programming environment1 with level2, merkle-patricia-tree3, ethereumjs4,
and web35 libraries(via npm package manager6).

• Remix IDE https://remix.ethereum.org/ to compile Smart Contracts and get their
bytecode and interfaces (abi). Also, for consultation.

• Nethereum Explorer block explorer https://explorer.nethereum.com/

• Ethernal Explorer block explorer https://app.tryethernal.com/overview

• geth command line console (geth attach)

• RLP decoder/encoder https://toolkit.abdk.consulting/ethereum

• Hexadecimal/text/decimal conversion
https://www.rapidtables.com/convert/number/hex-to-ascii.html

• Hashes Keccak 256 https://emn178.github.io/online-tools/keccak_256.html

B. USE CASE IMPLEMENTATION CONSIDERATIONS

The process of generating the original Blockchain/table containing the transactions

contemplated in the PoC use case has been automated. For this purpose, a programme or

script has been developed that takes advantage of the capacity of the official Ethereum geth

client to execute Javascript code in a non-interactive console.

First, the two initialised validator nodes are executed from the genesis block, each of them

in a virtual machine, and when a few blocks have been generated (without transactions), the

transaction execution script is launched from the Windows host computer.

The transaction execution script in turn consists of different steps or procedures between

which waits are carried out, so that the transactions are validated and incorporated into

different blocks. At each step, transactions are sent to the nodes, connecting to a non-

interactive console of the node in each case. For simplicity, each node has in its keystore the

accounts involved in the PoC, the first node contains four accounts, and the second node

contains the remaining three. In this way, the sending of transactions is facilitated, as no

wallet-type or other applications are needed for transfers or to interact with Smart Contracts

(such as Remix IDE).

The steps or procedures for performing ether transfer transactions are performed with the

native geth eth.sendTransaction console function, while lightweight scripts have been

developed for the deployment of Smart Contracts and transactions involving function calls.

These scripts are passed to the non-interactive geth console, and include the bytecode

encoding and abi interface of the Smart Contracts (obtained after compilation in Remix IDE),

creating and accessing Smart Contract instances with the eth.contract function among

others.

1 https://nodejs.org/en

2 https://www.npmjs.com/package/level

3 https://www.npmjs.com/package/merkle-patricia-tree

4 https://github.com/ethereumjs/ethereumjs-monorepo

5 https://www.npmjs.com/package/web3

6 https://www.npmjs.com/

https://remix.ethereum.org/
https://explorer.nethereum.com/
https://app.tryethernal.com/overview
https://nodejs.org/en
https://www.npmjs.com/package/level
https://www.npmjs.com/package/merkle-patricia-tree
https://github.com/ethereumjs/ethereumjs-monorepo
https://www.npmjs.com/package/web3
https://www.npmjs.com/

Página: 5 de 9

C. CONSIDERATIONS FOR THE PROCEDURE FOR DETECTING AFFECTED RECORDS FOR RIGHT TO

ERASURE

This procedure consists of detecting the necessary modifications to be made in the nodes'
databases, where the table of records and the blockchain materialise, and generating the
modified database (up to the last necessary block).

For this purpose, the PoC overwrites the relevant data that form part of the blocks, storage
of Smart Contracts, transaction receipts/logs, balance states, etc. For each block, the
different transactions that are recorded in it are observed, and for each transaction it is
checked whether the account in question is a sender, a recipient, or is included in additional
transaction data (input data). When one of these transactions is directed to a Smart Contract,
its storage and the possible transaction logs or receipts that may have been generated and
stored are also checked.

To perform these operations, the PoC, for simplicity, runs an auxiliary node that contains
a copy of the original database. This makes it easier to obtain blocks, transactions and their
data by means of queries to the API exposed by the node. Additionally, by executing a
NodeJS program, compatible with Windows and Linux, read and write libraries are used in
the node's databases (leveldb type) to access and modify the rest of the necessary data. This
approach allows the necessary modifications to be made without directly affecting the main
network until the Hard Fork update is executed.

It should be recalled that a node's leveldb database stores the different data structures of

the blockchain in the form of RLP-encoded key-value pairs. The key values represent

different data structures7 , including the nodes of the Merkle-Patricia trees8 that are stored

(State Trie and Smart Contracts storage), blocks and receipts/logs, where the address of an

account may appear.

The following are the steps (automated by means of a script) to be taken to remove the

trace of an address from an account (address) that has requested right to erasure through

read and write operations on its leveldb databases:

1. In the corresponding block interval, the transactions where the account appears in the
sender, recipient or data fields, respectively FROM, TO, INPUT/DATA, are queried for
each block, and in turn it is checked whether it is a transaction to a Smart Contract9 .
To simplify this query, the node is started without mining/validation options and without
synchronising with others, thus taking advantage of the Node.js libraries available to
interact with an Ethereum node.

In the Proof of Concept, the value of the account in question
(0x17c3b445750221cfc48b1ea6a8d13b1eef1da197) is overwritten by a constant

value (0xaa). In the case that this

account is the sender of a transaction, what is overwritten with the constant value is
one of the parameters of the transaction signature, since the data stored in the
blockchain does not explicitly include the field with the sender's account (from). What
the transaction does include is its signature, which incorporates the public key, from

7 https://github.com/ethereum/go-ethereum/blob/master/core/rawdb/schema.go

8 https://ethereum.org/es/developers/docs/data-structures-and-encoding/patricia-merkle-trie/#merkle-patricia-trees

9 The World State CodeHash field of the transaction's destination account address (to) is checked. A Smart Contract has a non-null
value.

https://github.com/ethereum/go-ethereum/blob/master/core/rawdb/schema.go
https://ethereum.org/es/developers/docs/data-structures-and-encoding/patricia-merkle-trie/#merkle-patricia-trees

Página: 6 de 9

which the account address can be derived. In Ethereum three fields are used for this
purpose 'r','s','v', the PoC overwrites 'r'10 .

This strategy causes an inconsistency that the existing block explorers or code
libraries do not take into account, so they will generate an error. However, this
inconsistency is resolved in the PoC with the Hard Fork, leaving no trace in the node
databases of the deleted (overwritten) account address.

Figure 1. Modified transaction, TO field, block number 9 (raw blockbody data structure, as stored in the key-
value database). Transaction number 2 of this block, once decoded, results in the different fields composing the

transaction with the values:
["0x01","0x3b9aca00","0x5208","0xaa","0x01","0x","0x0636","0x5c24cfefa3a5
0e948ccf0c747f4c3b8d9530c5136d3fd822eaa7044a4f7b46f2","0x536e28dcb593e4955da593bbc48d484d3abcdb7f9f923c2cd

3b0732eabcf82e9"].

2. For each block with affected transactions, the State Trie trees are obtained and the

tree-node corresponding to the account to be deleted is searched for. The tree-nodes

are stored as key-value pairs, where the key contains information about the account

address, in particular the search path not shared by the parent nodes, and the value

contains the account status (balance and other account data).

Given the way the states of the accounts are stored in the State Trie, with the

Keccak256 hash of the account address being the search path or index, the PoC, for

simplicity, performs a search with a reduced depth or number of shared nibbles. The

depth of the State Trie is directly related to the maximum number of accounts (leaf

nodes) it can hold, so the greater the number of existing accounts, the greater the

depth, with a theoretical maximum depth value of 64 levels11 . With a depth value of

10, more than a trillion accounts can be covered. A depth of 5 shared nibbles has

been used in the PoC. In case there is more than one account with the same 5 shared

nibbles, which would result in a collision of the first five hash numbers of both

accounts, a simple additional check would have to be performed to select the account

10 The values r and s are the components of the ECDSA elliptic curve that generates the public key, v is an identifier that faci litates
the extraction of the public key. If the sender account is derived having overwritten, a different account will be obtained (the one
corresponding to the new values r,s,v, with a very low probability that it already exists. in any case, the transaction has no effect on it.

11 The theoretical maximum depth of Ethereum's State Trie is 64 levels, as it is based on 256-bit keys divided into 4-bit nibbles. Each
account has a unique path up to 64 levels in the trie, and the number of accounts that can be stored depends on the paths generated from
the 256-bit hash. Although the trie could store 16^64 theoretical accounts, in practice, this number is limited by the current system structure,
the use of address space and the actual existing accounts. Studies estimate an approximate depth of 15 levels.
https://hackmd.io/@jsign/geth-mpt-analysis, https://arxiv.org/pdf/2408.14217

https://hackmd.io/@jsign/geth-mpt-analysis
https://arxiv.org/pdf/2408.14217

Página: 7 de 9

to be deleted (by checking the remaining search path, although the PoC does not

foresee this check as it is not necessary due to the small number of accounts).

Figure 2 Types of nodes in a Merkle-Patricia-Trie

Figure 3. Example of an address account search in the Merkle tree of the State Trie. The search paths of
three different (random) accounts are shown. The strategy employed by PoC replaces the leaf node values

corresponding to the account of the user exercising the right to erasure by a null key-value pair.

The leaf node contains two fields, the first field contains the last Keccak256 hash
values of the account address, which is the remaining search path, and the second
field contains the state of that account (balance and other data). In the PoC, the leaf
node corresponding to the account to be deleted is replaced by null values (0xc28080

which corresponds to the RLP encoded of the null key-value pair ['0x', '0x']).

3. If the transaction also corresponds to a Smart Contract call, it is necessary to check

whether the account also appears in the internal storage of the Smart Contract12 . To

do this, the storage trie of this Smart Contract is also obtained for each block

concerned. We proceed in a similar way to the State Trie but taking into account that

the search indexes in the Storage Trie depend on the type of variable and its order of

appearance in its declaration in the source code13. It is therefore necessary to know in

detail the source code of each Smart Contract concerned. Two Smart Contracts have

12 Although a Smart Contract can implement functions to erase its stored data at a certain point in time (by calling an erase function),
this data still exists on the blockchain as part of the stored information resulting from the execution of transactions in previous blocks.
Given the structure of a Smart Contract's data storage on the blockchain, Smart Contracts need to be known (source code) in order to be
able to effectively erase their stored data.

13 https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getstorageat

https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getstorageat

Página: 8 de 9

been used in the PoC, one of them with an address type variable and the other with a

mapping type variable (in where the account in question will appear in these variables).

Figure 4. Key in the Storage Trie depending on variable type and order in the Smart Contract

4. In each affected block, we obtain the receipts of the transactions, and overwrite the

value of the account in question by the hexadecimal string 'aaa...a' in a similar way

to the transactions in the blockbody.

5. Finally, we remove the keystore account from the keystore storage of the nodes that

include it.

The database modified at this point will be the basis for inconsistency management and
will be used to implement the Hard Fork of the blockchain.

D. CONSIDERATIONS FOR THE PROCEDURE OF GENERATING A NEW SOFTWARE VERSION

This procedure consists of generating the new version of the Blockchain infrastructure

software, where the key-value pairs of the modified database are incorporated, as well as the

validator node agreement mechanism, inspired by Bitcoin's BIP-0009, as described in the

Technical Note. The PoC implements a simplification of this in the geth code.

Since in the clique protocol the MixDigest field of the blocks is not used, and always has

an empty value, it will be the one used to signal the support of the validator nodes to the Hard

Fork. Once agreement is reached, this field will be modified to reflect this fact as well, which

will be what a node that re-synchronises or joins the network will check.

Figure 5. Source code of geth showing the calculation of the MixDigest field of a block header and an error
function if it is not null. In the PoC the field is modified to include the reference to support for the new version or
agreed new version. The error function is removed in the PoC.

The PoC implements the necessary functions in the validator nodes to keep track of a
certain number of the last blocks added to the chain, where the MixDigest field contains the
value corresponding to the acceptance or support of the new version (in the PoC the value
of this field is the version number, e.g. 1). In addition, it is necessary to implement also the
modification in the local database of the validator node when the agreement on the new
version is reached. This agreement is reached when the count of the number of blocks
accepting or supporting the new version reaches a majority (4 blocks out of the last 5 in the
PoC, with 2 validator nodes).

On the other hand, it is also necessary to implement the synchronisation of a new node,
or a node that re-synchronises from a previous state of the Blockchain/table. In both cases,
such a node runs the new software version and checks the MixDigest value of the last block

Key in leveldb, where p is the order of appearance in the source code (not counting constant variables
and counting from 0):

Simple variable: address, Key = Keccak256(p)

mapping(address=>uint256), Key = Keccak256(Keccak256(address concatenated with p))

Página: 9 de 9

to be downloaded, which, if it already contains the value of the accepted and executed
modification, the node then modifies its local database.

The geth functions that have been modified can be found in the following files:

• aepd.go: Auxiliary file to implement some variables and write functions in the

node's local database and consensus checking on the blocks being added.

• db.go: Auxiliary file to incorporate the changes in the local database of the node

that execute the deletion right. I.e., the affected and necessary values in which the
original value of the address of the account in question has been overwritten by a
constant value 'aaaa...a' and those corresponding to the balance of said

account.
• cmd/geth/main.go: Implements the functionality of a node that re-synchronises

with the modified network, modifies the local database and restarts with those
changes applied. To do this, a listening process is added to the events of the
downloader component, which checks the blocks to be downloaded/synchronised,
and the MixDigest field.

• consensus/clique/clique.go: Modifies the MixDigest field, with a value

equal to the current software version or an accepted version indicator when
agreement is reached from the validator nodes.

• core/blockchain.go: Implements an interface to clear the node's cache when

updating the database (after the validators' agreement or by resynchronisation of
the new chain). In this way, any console or application connected to the node will
not retrieve the original transactions from the cache, but the modified ones already
present in its local database.

• eth/api_backend.go: Implements an interface to access the node's local

Blokchain/table.

• eth/downloader/downloader.go: Checks the values of the MixDigest field of

the headers of the blocks being downloaded, when it finds that the modification
has been made (accepted and executed on the new Blockchain/table) then sends
a message to the node of this fact, so that it modifies its local database, and
restarts synchronising with the new Blockchain/table.

• eth/downloader/events.go: Add a new event to indicate if the change has

occurred.

• miner/miner.go: Implements an interface to expose the Blockchain/table of the

validator node.

• miner/worker.go:Call the aepd.go function that implements the BIP-0009

approach after validating a new block.

